Корреляционный анализ

Страница 1

Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Графики корреляционных зависимостей строят по уравнениям следующих функций:

Yx= F(X) или Xy = F(Y),(формула 1)

которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Y и X.

Переменные X и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции. Представим соотношения между типами шкал, в которых могут быть измерены переменные X и Y и соответствующими мерами связи в виде таблицы:

Тип шкалы

Мера связи

Переменная X

Переменная Y

Интервальная или отношений

Интервальная или отношений

Коэффициент Пирсона rxy

Ранговая, интервальная или отношений

Ранговая, интервальная или отношений

Коэффициент Спирмена ρxy

Ранговая

Ранговая

Коэффициент Кендалла τ

Дихотомическая

Дихотомическая

Коэффициент φ

Дихотомическая

Ранговая,

Рангово-бисериальный Rrb

Дихотомическая

Интервальная или отношений

Бисериальный Rбис

Интервальная

Ранговая

Не разработан

3.1 Коэффициент корреляции Пирсона

Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона. Если же связь между переменными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 — являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 — следовательно произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной Х будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными X и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.

Знак коэффициента корреляции очень важен для интерпретации полученной связи. Подчеркнем еще раз, что если знак коэффициента линейной корреляции — плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Страницы: 1 2

Еще по теме:

Модель стрессовой реакции
Если личность находится в состоянии крайнего стресса, то она будет реагировать на ситуацию по признаку «битва или бегство». Синдром «бегства» проявляется тогда, когда человек пытается уйти от угрожающей ситуации. Реакция «битвы» позволяет ...

Самоуважение, самооценка и мотивация социального поведения
Самоуважение является эмоциональной компонентой Я-концепции, как целостного представления человека о себе как о личности, биологическом организме, члене общества, работнике, профессионале и т.д. Я-концепция выступает как установка по отно ...

Представления об интеллекте
Понятие "интеллект" как объект научного исследования было введено в психологию антропологом Ф. Гальтоном в конце ХIХ в. Находясь под влиянием эволюционной теории Чарльза Дарвина, он решал решающей причиной возникновения любых ин ...