Корреляционное отношение Пирсона η

Страница 2

Для применения корреляционного отношения Пирсона необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что обе переменные имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных Х и У должно быть одинаковым.

4. Для оценки уровня достоверности корреляционного отношения Пирсона следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стьюдента при k = n — 2.

3.10 Множественная корреляция

Наряду с анализом связей между двумя рядами данных можно проводить анализ многомерных корреляционных связей. Наиболее простым случаем нахождения подобной зависимости является вычисление коэффициентов множественной корреляции между тремя переменными X, Y и Z. В соответствии с числом переменных вычисляются три коэффициента множественной корреляции. Собственно говоря, коэффициент множественной корреляции оценивает тесноту линейной связи одной переменной, например X, с двумя остальными, Y и Z, и обозначается как rx(yz) . При оценке тесноты линейной связи переменной Y с переменными Х и Z, коэффициент множественной корреляции обозначается как ry(xz)

Вычисление коэффициентов множественной корреляции базируется на коэффициентах линейной корреляции между переменными Х и Y — rxy, Х и Z, — rxz, У и Z, — ryz. Для вычисления одного из коэффициентов множественной корреляции, например rx(yz) используется следующая формула:

(формула 11)

где rxy, rxz, ryz — коэффициенты линейной корреляции между парами переменных Х и Y, Х и Z, Y и Z

Коэффициент множественной корреляции принимает значения от 0 до 1. Значимость этого коэффициента оценивают по величине t-критерия Стьюдента с числом степеней свободы k = n - 3.

Для применения множественного коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что все переменные имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым.

4. Для оценки уровня достоверности корреляционного отношения Пирсона следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стыодента при k = n - 3.

Название «частная корреляция» был впервые использовано в работе Д. Юла в 1907. Смысл этого понятия иллюстрирует следующий пример. Предположим, что при обработке некоторых данных удалось обнаружить значимую отрицательную корреляцию между длиной волос и ростом (т.е. люди низкого роста обладают более длинными волосами). На первый взгляд это может показаться странным: однако, если включить в расчет еще один признак — переменную «пол» и использовать не линейную, а частную корреляцию, то результат получит закономерное объяснение. поскольку женщины в среднем имеют более длинные волосы, чем мужчины, а их рост в среднем ниже, чем у мужчин. После учета переменной «пол» частная корреляция между длиной волос и ростом может оказаться близкой к единице. Иными словами, если одна величина коррелирует с другой, то это может быть отражением того факта, что они обе коррелируют с третьей величиной или с совокупностью величин.

Если известна линейная связь между парами переменных X, Y и Z., то можно подсчитать частные коэффициенты корреляции, показывающие линейную корреляционную зависимость между двумя переменными при постоянной величине третьей переменной. Для определения частного коэффициента корреляции между переменными X и Y при постоянной величине переменной Z, используют формулу:

Страницы: 1 2 3

Еще по теме:

Дезорганизационная функция
Способность эмоций нарушать целенаправленную деятельность легла в основу теорий, подчеркивающих дезорганизационнуюфункцию эмоций (Э. Клапаред; Pieron, 1928 и др.). Однако данная характеристика эмоций может быть принята лишь с определенным ...

Волевой процесс
Волевое действие может реализоваться в более простых и более сложных формах. В простом волевом акте побуждение к действию, направленному на более или менее ясно осознанную цель, почти непосредственно переходит в действие, не предваряемое ...

Факторная матрица.
Факторный анализ – это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы эксперимента ...